Семинарское занятие 9 (MATLAB)
Тема: Деревья решений и ансамбли (fitctree / fitcensemble), важность признаков (importance), сравнение моделей.
Цель занятия
1) Обучить одиночное дерево решений (fitctree).
2) Обучить ансамбли деревьев (bagging / random forest / boosting) через fitcensemble.
3) Оценить и сравнить качество по метрикам и confusion matrix.
4) Оценить важность признаков (predictor importance / permutation importance) и интерпретировать результат.
Входные данные
Рекомендуется бинарный датасет (2 класса) для ROC/PR, но можно и многоклассовый.
Варианты:
A) Встроенный cancer_dataset (если доступен).
B) Свой CSV с метками 0/1 (или несколькими классами).

Примечание: деревья не требуют строгой нормализации, но для честности сравнения используйте одинаковый split.
Задание
1. Загрузить данные X и метки y. Проверить баланс классов.
2. Сделать разбиение Train/Test (80/20) или Train/Val/Test (60/20/20) со стратификацией и фиксированным seed.
3. Обучить одиночное дерево (fitctree) и оценить качество на test (confusion matrix, accuracy, precision, recall, F1).
4. Обучить bagging/Random Forest через fitcensemble("Bag") и оценить на test. Включить OOBPred/OOBPredictorImportance.
5. Обучить boosting через fitcensemble("LogitBoost" или "AdaBoostM1") и оценить на test.
6. Сравнить модели в таблице метрик: Tree vs Bagging/RF vs Boosting.
7. Построить важность признаков для ансамблей и сравнить (bar plot).
8. Сделать краткий анализ: почему ансамбль лучше/хуже, какие признаки наиболее важны.
Что сдавать
1) Скрипт: Seminar9_Trees_Ensembles_Importance_Compare.m
2) Отчёт 1–2 страницы: confusion matrix для 3 моделей, таблица метрик, графики важности признаков, вывод.
3) (Опционально) .mat с моделями и результатами.
Критерии оценивания (макс. 15 баллов)
• Корректный split + воспроизводимость (seed) — 3 б.
• Дерево (fitctree) + оценка — 3 б.
• Bagging/RandomForest (fitcensemble Bag) + OOB — 4 б.
• Boosting (fitcensemble LogitBoost/AdaBoostM1) — 3 б.
• Importance + вывод — 2 б.
Бонус +2 б: permutation importance на test и сравнение с OOB importance.
Шаблон кода MATLAB (копируйте и запускайте)
%% Seminar 9: Decision Trees & Ensembles in MATLAB
rng(42);

%% 1) Data (пример: cancer_dataset)
try
 load cancer_dataset
 X = X'; % 699x9
 y = double(T(2,:)'); % 0/1
 featureNames = string(1:size(X,2));
catch
 % Свой датасет:
 % D = readtable("data.csv");
 % y = double(categorical(D.Label) == categorical("Defect"));
 % X = table2array(D(:, setdiff(D.Properties.VariableNames, {'Label'})));
 % featureNames = string(setdiff(D.Properties.VariableNames, {'Label'}));
 error("Подключите свой CSV в блоке catch.");
end

yCat = categorical(y);
fprintf('Class balance: y=0: %d | y=1: %d\n', sum(y==0), sum(y==1));

%% 2) Train/Test split (80/20) со стратификацией
cv = cvpartition(yCat,'Holdout',0.2);
idxTr = training(cv);
idxTe = test(cv);

Xtr = X(idxTr,:); ytr = y(idxTr); ytrCat = yCat(idxTr);
Xte = X(idxTe,:); yte = y(idxTe); yteCat = yCat(idxTe);

%% 3) Single Decision Tree
tree = fitctree(Xtr, ytrCat, 'SplitCriterion','gdi'); % gdi or deviance
yhatTree = predict(tree, Xte);

mTree = binMetrics(yteCat, yhatTree);
disp("Tree metrics:"); disp(mTree);

figure; view(tree,'Mode','graph'); title('Decision Tree');

figure; confusionchart(yteCat, yhatTree);
title('Decision Tree: Confusion Matrix (Test)');

%% 4) Bagging / Random Forest (TreeBagger-like via fitcensemble)
% Bagging of trees; random feature selection is controlled by 'NumVariablesToSample'
bag = fitcensemble(Xtr, ytrCat, 'Method','Bag', ...
 'NumLearningCycles', 200, ...
 'Learners', templateTree('MinLeafSize', 5), ...
 'PredictorNames', cellstr(featureNames), ...
 'ClassNames', [categorical(0) categorical(1)], ...
 'OOBPrediction','on', ...
 'OOBPredictorImportance','on', ...
 'NumVariablesToSample', 'all'); % set to 'all' for pure bagging; try 'sqrt' for RF-like

yhatBag = predict(bag, Xte);
mBag = binMetrics(yteCat, yhatBag);
disp("Bagging metrics:"); disp(mBag);

figure; confusionchart(yteCat, yhatBag);
title('Bagging: Confusion Matrix (Test)');

% OOB error curve
figure; plot(oobLoss(bag,'Mode','cumulative')); grid on;
xlabel('Number of trees'); ylabel('OOB classification error');
title('Bagging: OOB Error vs #Trees');

% OOB feature importance (permutation-based)
impBag = bag.OOBPermutedPredictorDeltaError;
figure; bar(impBag); grid on;
xticks(1:numel(impBag)); xticklabels(featureNames); xtickangle(45);
ylabel('OOB ΔError'); title('Bagging: OOB Permuted Predictor Importance');

%% 5) Boosting (LogitBoost) — good for classification
boost = fitcensemble(Xtr, ytrCat, 'Method','LogitBoost', ...
 'NumLearningCycles', 200, ...
 'LearnRate', 0.1, ...
 'Learners', templateTree('MaxNumSplits', 20), ...
 'PredictorNames', cellstr(featureNames), ...
 'ClassNames', [categorical(0) categorical(1)]);

yhatBoost = predict(boost, Xte);
mBoost = binMetrics(yteCat, yhatBoost);
disp("Boosting metrics:"); disp(mBoost);

figure; confusionchart(yteCat, yhatBoost);
title('Boosting (LogitBoost): Confusion Matrix (Test)');

% Predictor importance for boosting
impBoost = predictorImportance(boost);
figure; bar(impBoost); grid on;
xticks(1:numel(impBoost)); xticklabels(featureNames); xtickangle(45);
ylabel('Importance'); title('Boosting: Predictor Importance');

%% 6) Сравнение моделей в таблице
Models = ["Tree"; "Bagging"; "Boosting"];
Acc = [mTree.Accuracy; mBag.Accuracy; mBoost.Accuracy];
Prec = [mTree.Precision; mBag.Precision; mBoost.Precision];
Rec = [mTree.Recall; mBag.Recall; mBoost.Recall];
F1 = [mTree.F1; mBag.F1; mBoost.F1];

Results = table(Models, Acc, Prec, Rec, F1);
disp("=== Comparison (Test) ===");
disp(Results);

%% ===== Helper: binary metrics from confusion matrix =====
function M = binMetrics(yTrue, yPred)
CM = confusionmat(yTrue, yPred, 'Order', [categorical(0) categorical(1)]);
TN = CM(1,1); FP = CM(1,2);
FN = CM(2,1); TP = CM(2,2);

acc = (TP+TN)/max(sum(CM(:)),1);
prec = TP/max(TP+FP,1);
rec = TP/max(TP+FN,1);
f1 = 2*prec*rec/max(prec+rec,1e-12);

M = table(acc, prec, rec, f1, 'VariableNames', {'Accuracy','Precision','Recall','F1'});
end

Примечания
• Для “Random Forest-like” режима в bagging попробуйте NumVariablesToSample="sqrt" и увеличьте NumLearningCycles.
• OOB importance (ΔError) — хорошая оценка важности, но можно также сделать permutation importance на test (бонус).
• Boosting чувствителен к шуму: уменьшайте LearnRate и контролируйте глубину базовых деревьев (MaxNumSplits).
